Salmon Stream Temperature Fact Sheet

Chester Creek

Cook Inletkeeper coordinates a Stream Temperature Monitoring Network across key salmon-bearing systems of the Cook Inlet basin. Our goal is to describe water temperature profiles and identify watershed characteristics that make specific streams more sensitive to climate change impacts. This fact sheet provides a summary of data collected on Chester Creek through this collaborative effort.

The Chester Creek watershed (upstream of monitoring site is highlighted in green on map) is located in Anchorage and originates in the Chugach Mountains.

- Watershed size: 18,932 acres
- Maximum elevation: 4,439 feet
- Mean elevation: 656 feet
- Percent wetlands: 3.5%
- Connected lakes: No

For more details about our methods or data, please contact:
Sue Mauger
Cook Inletkeeper
3734 Ben Walters Ln.
Homer, AK 99603
(907) 235-4068 x24
sue@inletkeeper.org

Why temperature?

Water temperature affects all phases of the salmon lifecycle, including:
- timing of migration
- survivorship of eggs
- respiration
- metabolism
- availability of O₂

Warm water temperature induces stress in salmon and makes them more vulnerable to pollution, predation and disease.

Water temperature monitoring site is located downstream of Arctic Blvd.
Latitude (N) 61.20500; Longitude (W) -149.89600

Watershed facts

The Chester Creek watershed (upstream of monitoring site is highlighted in green on map) is located in Anchorage and originates in the Chugach Mountains.

Watershed size: 18,932 acres
Maximum elevation: 4,439 feet
Mean elevation: 656 feet
Percent wetlands: 3.5%
Connected lakes: No
Chester Creek Temperature Summary

Below is a summary of Chester Creek water temperature data from 2008-2011.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum temperature recorded</td>
<td>16.4°C (61.6°F)</td>
</tr>
<tr>
<td>June average temperature</td>
<td>11.2°C (52.2°F)</td>
</tr>
<tr>
<td>July average temperature</td>
<td>12.6°C (54.6°F)</td>
</tr>
<tr>
<td>August average temperature</td>
<td>11.7°C (53.1°F)</td>
</tr>
<tr>
<td>Maximum 7-day average temperature</td>
<td>13.2°C (55.7°F)</td>
</tr>
<tr>
<td>Maximum 7-day maximum temperature</td>
<td>14.8°C (58.6°F)</td>
</tr>
<tr>
<td># of days/year temperature exceeds 13°C (55°F)</td>
<td>39</td>
</tr>
<tr>
<td># of days/year temperature exceeds 15°C (59°F)</td>
<td>8</td>
</tr>
</tbody>
</table>

Climate Change Vulnerability

We can use our current knowledge of the relationship between air and water temperature to develop stream-specific predictions for future water temperature. “Sensitivity” is a term used to describe how much a stream’s water temperature will change with a 1°C (1.8°F) change in air temperature. A stream with a higher sensitivity (>0.75) will increase faster as air temperatures increase in the years ahead. And we can use a salmon-relevant threshold value of 13°C (55°F) for average July temperature to describe a stream as “cold” or “warm” to create a framework for assessing climate change vulnerability:

Chester Creek falls in the “cold, low sensitivity” category, which indicates that stream temperatures will likely remain favorable for salmon and this system will continue to provide important cold-water habitat in the decades ahead.

This baseline data set and our understanding of stream-specific sensitivity can guide future monitoring efforts to track climate change impacts and can help fisheries and land managers prioritize streams for research and protection efforts to ensure Cook Inlet wild salmon endure as thermal change continues.