Salmon Stream Temperature Fact Sheet

East Fork Chulitna River

Cook Inletkeeper coordinates a Stream Temperature Monitoring Network across key salmon-bearing systems of the Cook Inlet basin. Our goal is to describe water temperature profiles and identify watershed characteristics that make specific streams more sensitive to climate change impacts. This fact sheet provides a summary of data collected on the E. Fork Chulitna River from this collaborative effort.

Why temperature?

Water temperature affects all phases of the salmon lifecycle, including:
- timing of migration
- survivorship of eggs
- respiration
- metabolism
- availability of O₂

Warm water temperature induces stress in salmon and makes them more vulnerable to pollution, predation and disease.

For more details about our methods or data, please contact:
Sue Mauger
Cook Inletkeeper
3734 Ben Walters Ln.
Homer, AK 99603
(907) 235-4068 x24
sue@inletkeeper.org

Watershed facts

The East Fork Chulitna River watershed (highlighted in green on map) is located in the Mat-Su basin. The East Fork flows into the Middle Fork downstream of the Parks Highway and becomes the Chulitna River which joins the Susitna River at Talkeetna.

Watershed size 98,947 acres
Maximum elevation 6,246 feet
Mean elevation 3,800 feet
Percent wetlands 2.2%
Connected lakes No

Water temperature monitoring site is located downstream of the Parks Highway bridge.
Latitude (N) 63.14500; Longitude (W) -149.42100

Protecting Alaska’s Cook Inlet watershed and the life it sustains since 1995.
E. Fork Chulitna River Temperature Summary

Below is a summary of water temperature data from 2008-2012.

- Maximum temperature recorded: 15.5°C (59.8°F)
- June average temperature: 6.7°C (44.0°F)
- July average temperature: 8.6°C (47.5°F)
- August average temperature: 7.8°C (46.0°F)
- Maximum 7-day average temperature: 9.8°C (49.7°F)
- Maximum 7-day maximum temperature: 12.4°C (54.3°F)
- # of days/year temperature exceeds 13°C (55°F): 6
- # of days/year temperature exceeds 15°C (59°F): 1

Climate Change Vulnerability

We can use our current knowledge of the relationship between air and water temperature to develop stream-specific predictions for future water temperature. “Sensitivity” is a term used to describe how much a stream’s water temperature will change with a 1°C (1.8°F) change in air temperature. A stream with a higher sensitivity (>0.75) will increase faster as air temperatures increase in the years ahead. And we can use a salmon-relevant threshold value of 13°C (55°F) for average July temperature to describe a stream as “cold” or “warm” to create a framework for assessing climate change vulnerability:

The East Fork Chulitna River falls in the “cold, low sensitivity” category, which indicates that stream temperatures will likely remain favorable for salmon and this system will continue to provide important cold-water habitat in the decades ahead.

This baseline data set and our understanding of stream-specific sensitivity can guide future monitoring efforts to track climate change impacts and can help fisheries and land managers prioritize streams for research and protection efforts to ensure Cook Inlet wild salmon endure as thermal change continues.