Cook Inletkeeper coordinates a Stream Temperature Monitoring Network across key salmon-bearing systems of the Cook Inlet basin. Our goal is to describe water temperature profiles and identify watershed characteristics that make specific streams more sensitive to climate change impacts. This fact sheet provides a summary of data collected on Jim Creek through this collaborative effort.

Jim Creek

Cook Inletkeeper coordinates a Stream Temperature Monitoring Network across key salmon-bearing systems of the Cook Inlet basin. Our goal is to describe water temperature profiles and identify watershed characteristics that make specific streams more sensitive to climate change impacts. This fact sheet provides a summary of data collected on Jim Creek through this collaborative effort.

The Jim Creek watershed (highlighted in green on map) is located in the Mat-Su basin. The creek flows out of a series of lakes and into the Knik River.

Watershed facts

The Jim Creek watershed (highlighted in green on map) is located in the Mat-Su basin. The creek flows out of a series of lakes and into the Knik River.

- Watershed size: 30,683 acres
- Maximum elevation: 6,364 feet
- Mean elevation: 1,619 feet
- Percent wetlands: 18.8%
- Connected lakes: Yes

Jim Creek watershed facts

Why temperature?

Water temperature affects all phases of the salmon lifecycle, including:

- timing of migration
- survivorship of eggs
- respiration
- metabolism
- availability of O₂

Warm water temperature induces stress in salmon and makes them more vulnerable to pollution, predation and disease.

For more details about our methods or data, please contact:
Sue Mauger
Cook Inletkeeper
3734 Ben Walters Ln.
Homer, AK 99603
(907) 235-4068 x24
sue@inletkeeper.org

Water temperature monitoring site is located one mile upstream of the Jim Creek flats.
Latitude (N) 61.52900; Longitude (W) -148.93300
Jim Creek Temperature Summary

Below is a summary of Jim Creek water temperature data from 2009-2011.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum temperature recorded</td>
<td>23.9°C (75.0°F)</td>
</tr>
<tr>
<td>June average temperature</td>
<td>15.6°C (60.1°F)</td>
</tr>
<tr>
<td>July average temperature</td>
<td>17.3°C (63.1°F)</td>
</tr>
<tr>
<td>August average temperature</td>
<td>15.3°C (59.6°F)</td>
</tr>
<tr>
<td>Maximum 7-day average temperature</td>
<td>19.3°C (66.7°F)</td>
</tr>
<tr>
<td>Maximum 7-day maximum temperature</td>
<td>20.7°C (69.3°F)</td>
</tr>
<tr>
<td># of days/year temperature exceeds 13°C (55°F)</td>
<td>76</td>
</tr>
<tr>
<td># of days/year temperature exceeds 15°C (59°F)</td>
<td>61</td>
</tr>
</tbody>
</table>

Climate Change Vulnerability

We can use our current knowledge of the relationship between air and water temperature to develop stream-specific predictions for future water temperature. “Sensitivity” is a term used to describe how much a stream’s water temperature will change with a 1°C (1.8°F) change in air temperature. A stream with a higher sensitivity (>0.75) will increase faster as air temperatures increase in the years ahead. And we can use a salmon-relevant threshold value of 13°C (55°F) for average July temperature to describe a stream as “cold” or “warm” to create a framework for assessing climate change vulnerability:

![Sensitivity Chart](chart.png)

During the last 80 years, Cook Inlet salmon have become more sensitive to changes in air and water temperature. The baseline data set and our understanding of stream-specific sensitivity can guide future monitoring efforts to track climate change impacts and can help fisheries and land managers prioritize streams for research and protection efforts to ensure Cook Inlet wild salmon endure as thermal change continues.