Cook Inletkeeper coordinates a Stream Temperature Monitoring Network across key salmon-bearing systems of the Cook Inlet basin. Our goal is to describe water temperature profiles and identify watershed characteristics that make specific streams more sensitive to climate change impacts. This fact sheet provides a summary of data collected on the McNeil River through this collaborative effort.

The McNeil River watershed (highlighted in green on map) is located on the southwest side of Cook Inlet and home to the world’s largest concentration of brown bears who congregate to feed on salmon.

Watershed facts

- Watershed size: 69,857 acres
- Maximum elevation: 4,565 feet
- Mean elevation: 1,442 feet
- Percent wetlands: 0.0%
- Connected lakes: Yes

Why temperature?

Water temperature affects all phases of the salmon lifecycle, including:
- timing of migration
- survivorship of eggs
- respiration
- metabolism
- availability of O₂

Warm water temperature induces stress in salmon and makes them more vulnerable to pollution, predation and disease.

For more details about our methods or data, please contact:

Sue Mauger
Cook Inletkeeper
3734 Ben Walters Ln.
Homer, AK 99603
(907) 235-4068 x24
sue@inletkeeper.org

Water temperature monitoring site is located above McNeil River Falls.
Latitude (N) 59.11700; Longitude (W) -154.27900

Photo by Ted Otis
McNeil River Temperature Summary

Below is a summary of McNeil River water temperature data from 2008-2011.

- Maximum temperature recorded: 15.5°C (60.0°F)
- July average temperature: 8.5°C (47.4°F)
- Maximum 7-day average temperature: 11.4°C (52.5°F)
- Maximum 7-day maximum temperature: 13.7°C (56.7°F)
- # of days/year temperature exceeds 13°C (55°F): 9
- # of days/year temperature exceeds 15°C (59°F): 1

Climate Change Vulnerability

We can use our current knowledge of the relationship between air and water temperature to develop stream-specific predictions for future water temperature. “Sensitivity” is a term used to describe how much a stream’s water temperature will change with a 1°C (1.8°F) change in air temperature. A stream with a higher sensitivity (>0.75) will increase faster as air temperatures increase in the years ahead. And we can use a salmon-relevant threshold value of 13°C (55°F) for average July temperature to describe a stream as “cold” or “warm” to create a framework for assessing climate change vulnerability:

The McNeil River falls in the “cold, low sensitivity” category, which indicates that stream temperatures will likely remain favorable for salmon and this system will continue to provide important cold-water habitat in the decades ahead.

This baseline data set and our understanding of stream-specific sensitivity can guide future monitoring efforts to track climate change impacts and can help fisheries and land managers prioritize streams for research and protection efforts to ensure Cook Inlet wild salmon endure as thermal change continues.