Cook Inletkeeper coordinates a Stream Temperature Monitoring Network across key salmon-bearing systems of the Cook Inlet basin. Our goal is to describe water temperature profiles and identify watershed characteristics that make specific streams more sensitive to climate change impacts. This fact sheet provides a summary of data collected on the Ninilchik River through this collaborative effort.

Why temperature?

Water temperature affects all phases of the salmon lifecycle, including:

* timing of migration
* survivorship of eggs
* respiration
* metabolism
* availability of O₂

Warm water temperature induces stress in salmon and makes them more vulnerable to pollution, predation and disease.

For more details about our methods or data, please contact:

Sue Mauger
Cook Inletkeeper
3734 Ben Walters Ln.
Homer, AK 99603
(907) 235-4068 x24
sue@inletkeeper.org

Ninilchik River

Cook Inletkeeper coordinates a Stream Temperature Monitoring Network across key salmon-bearing systems of the Cook Inlet basin. Our goal is to describe water temperature profiles and identify watershed characteristics that make specific streams more sensitive to climate change impacts. This fact sheet provides a summary of data collected on the Ninilchik River through this collaborative effort.

Water temperature monitoring site is located downstream of the Sterling Highway bridge.
Latitude (N) 60.04900; Longitude (W) -151.65600

Watershed facts

The Ninilchik River watershed (highlighted in green on map) is located on the southern Kenai Peninsula. The unincorporated town of Ninilchik sits along the mouth of the river.

Watershed size 86,488 acres
Maximum elevation 2,051 feet
Mean elevation 668 feet
Percent wetlands 21.9 %
Connected lakes No
Climate Change Vulnerability

We can use our current knowledge of the relationship between air and water temperature to develop stream-specific predictions for future water temperature. “Sensitivity” is a term used to describe how much a stream’s water temperature will change with a 1°C (1.8°F) change in air temperature. A stream with a higher sensitivity (>0.75) will increase faster as air temperatures increase in the years ahead. And we can use a salmon-relevant threshold value of 13°C (55°F) for average July temperature to describe a stream as “cold” or “warm” to create a framework for assessing climate change vulnerability:

The Ninilchik River falls in the “cold, high sensitivity” category, which indicates that stream temperatures will likely exceed 13°C (55°F) more quickly and consistently in the decades ahead resulting in more thermal stress for juvenile salmon.

This baseline data set and our understanding of stream-specific sensitivity can guide future monitoring efforts to track climate change impacts and can help fisheries and land managers prioritize streams for research and protection efforts to ensure Cook Inlet wild salmon endure as thermal change continues.